
NASA-CR-1 92 765 //, _:/ -/2-
, , . I)

/-/4

Rapid Exploration of Curvilinear Grids Using Direct Volume Rendering

UCSC-CRL-93-02

Allen Van Gelder and Jane Wilhelms

Computer and Information Sciences

University of California, Santa Cruz 95064

March 16, 1993

Abstract

Fast techniques for direct volume rendering over curvilinear grids of hexahedral cells are developed.

This type of 3D grid is common in computational fluid dynamics and finite element analysis. Four

new projection methods are presented and compared with each other and with previous methods for

tetrahedral grids and rectilinear grids. All four methods use polygon-rendering hardware for speed. A

simplified algorithm for visibility ordering, which is based on a combination of breadth-first and depth-first

searches, is described. A new multi-pass blending method is described that reduces visual artifacts that

are introduced by linear interpolation in hardware where exponential interpolation is needed. Multi-

pass blending is of equal interest to hardware-oriented projection methods used on rectilinear grids.

Visualization tools that permit rapid data banding and cycling through transfer functions, as well as

region restriction, are described.

(, _4A_ A-C _,- 1 -_2 7 (, b) _API9 EX PLdlI_AT ION

i)F CUPVILINFA_ G&[GS US[NG DIRECT

_r"LIJ;,_c ',_:%,_Cd.[:%3 (C.tl iforni:_

Jniv.) 14 [l

N93-24944

Unc I Is

G3151 01541_7

- 7/)7

1 Introduction

The visualization technique known as direct volume rendering is attractive because of its extreme flexibility,

being able to map data values to color and opacity in any fashion. Direct volume rendering can be very useful

for getting a general idea of volume contents, for scanning regions of interest, and for providing a context

when combined with other methods (e.g., feature extraction). But it is hampered by computational cost.

While some relatively fast methods have been introduced, they are subject to visual artifacts. Problems

of speed and artifacts are exacerbated when volume-rendering non-rectilinear grids. However, when using

direct volume rendering for a general perusal of volume information, improvements in speed may be worth

even relatively significant artifacts.

Direct volume rendering is a visualization method for scalar sample data volumes where values within

the _olume are mapped to color and opacity and directly rendered by accumulating these cSlor and opacity

values to the screen pixels [DCH88, Lev88, UK88, Kru90, Wes90, MHC90, ST90, WVG91, Wil92b]. Any part

of the volume may be visible in the final semi-transparent image. Direct volume rendering can be done by

casting rays through pixels into the volume and traversing the rays [Lev88, UK88, Kru90], or by projecting

sample regions or cells within the volume to the screen [UK88, Wes90, LH91, MHC90, ST90, WVG91].

Projection must be in front-to-back or back-to-front order for correct compositing if opacity values between

zero and one occur.

If interpolation between sample points and integration in depth are not done accurately visual artifacts

may occur [WVG91]. Further, because no geometric primitives such as polygonal isosurfaces are extracted,

most or all of the work of direct volume rendering must be repeated if the viewpoint changes. For these

reasons, direct volume rendering is an expensive technique to do well.

Significant speed-ups can be achieved by the use of coherence within the volume, by simplifying

interpolation and integration, and by making use of graphics hardware (as in splatting and coherent

projection)[UK88, MHcg0, ST90, LH91, WVGgl]. Speed-ups achieved on rectilinear grids, if not to realtime,

are at least to the point where changing viewing parameters is comfortable to the user. We believe that the

significant speed-up these methods provide are well worth the cost in image quality in many applications.

The problem of achieving acceptably fast direct volume rendering is exacerbated if sample volumes are not

on a regular rectilinear grid. Our goal in this investigation was to achieve some of these gains on curvilinear

grids of hexahedral cells. Williams has studied related issues on tetrahedral grids [Wi192b, Wil92a].

In our application, computational fluid dynamics, curvilinear grids are common. A curvilinear grid can

be thought of as a 3-dimensional rectilinear grid in computational space that is "warped" in physical space

around regions of interest (e.g., aircraft wings). The grids present problems for direct volume rendering

because cells vary greatly in size (e.g., neighbor distances in a commonly used grid vary by a factor of

10,000 [HB85]), cells may have irregular shapes, and they may be degenerate (e.g., multiple sample points

in computational space may map to the same physical space location).

All methods described herein are designed for curvilinear grids that may not be convex as a volume, but

whose cells are 6-sided convex polyhedra (hexahedra), possibly with some degeneracies in that some edges

of the cell have zero length, and some faces have zero area.

Initial explorations convinced us that using ray-casting to directly render these volumes was unacceptably

slow [RW92]. The main thrust of this paper is to explore more rapid, projection-based, methods. It is hard

to compare these very different approaches exactly, because the ray-caster ran on a different machine and

ray-casting is very sensitive to image size and volume orientation, ttowever, we have found approximately,

for similar images, that: (1) for rendering from a new viewpoint, our fastest method is a few hundred times

faster than the ray-caster, and our slowest method is about 5 to 10 times faster; (2) for rendering from the

same viewpoint, our fastest method is as above as viewpoint has no effect, and our slowest method is about

ahundredtimesfaster.However, as window size increases, or the volume is zoomed, the cost of ray-casting

may rise greatly while the cost of hardware-assisted projection will not be affected.

The faster methods may show significant artifacts in certain cases, however. Our new projection methods

are described in Section 2.

To take into account opacity, a front-to-back ordering must be established, because cells (defined by

eight corner sample points) in front may partially or totally obscure those behind. Because curvilinear grids

can wrap around (see Figure 3), calculating this visibility ordering is nontrivial [MHCg0, Wil92b]. Further,

accumulating color and opacity values correctly in depth involves an exponential function [Kru90, MHC90,

WVG91]. To approximate this quickly by a quadratic, we have developed a multi-pass blending method.

These issues are discussed in Section 3.

Direct volume rendering is an intriguing and desirable method because of the amount of_formation that

can be included in one image. But the fact that information may be layered and project to the same pixel

makes rendering speed particularly important, because seeing the volume from different viewpoints clarifies

it immensely. Generally, the mapping from data values to color and opacity is done using a simple transfer

function. (For certain types of volumes, e.g., medical images, more complex methods such as material

percentages may be desirable [DCH88].) We typically use an interactive transfer function editor to design

the mapping from data to color and opacity, but as rendering became faster, we discovered that a significant

amount of time was spent in trying to find desirable transfer functions [Ramg0]. In Section 4 we discuss

some new methods of rapidly designing and changing transfer functions for volume exploration.

The final area of research discussed in this paper is zeroing in on regions of interest and inverting the

mapping from image to volume. We have designed a method whereby the user specifies a 3D region of

interest, and the software renders only that region, indicating (if asked) the sample points and data values

located in that region. In this way, the user can determine where interesting regions lie in the original grid.

This topic is discussed in Section 5.

2 Rapid Direct Volume Rendering Approaches

We have implemented four projection methods for curvilinear grids. Previous work on projection methods

for direct volume rendering is largely limited to a plethora of work on regular grids. Some work has been done

on ray-casting irregular grids [Gar90, Use91, RW92]. A few researchers have explored projection methods on

such grids. Max et al. describe a careful and general method that we felt was too slow for our needs [MHC90].

Williams takes the approach of breaking curvilinear grid ceils into five tetrahedra each and projecting the

tetrahedra [Wi192b, Wil92a]. While this is a quite rapid and reasonable approach, we hoped to achieve more

speed and to avoid the explosion of primitives this involves, as well as some of the artifacts. At some point

it would be worthwhile to do an in-depth comparison of this method with ours. Challinger implemented a

kind of hybrid ray-caster/projection method where slle sorted cells faces by scanline and pixel rather like a

scan conversion algorithm for polygons, but then ray-cast faces present in a single pixet [WCA+90, Cha90].

This approach was also slower than we desired.

All four of our methods have some things ill common:

• They convert cell projections to Gouraud-shaded polygons and use hardware for rendering.

• They use hardware compositing.

• They store cell information such as vertex locations, depth, and transfer function pointers in cell

data structures. At a cost in space this provides better speed. Sorted lists of indices into these data

structures are used by methods described in the following sections.

2.1 Depthless Cell Face Projection

Our first method is a very simple but admirably fast one: each data value is mapped to a color and opacity

and the faces of each curvilinear grid cell is drawn as Gouraud-shaded polygons whose vertices have these

mapped values. Data structures for this method record information for three adjoining faces of the cell,

so each face is only drawn once. Usually this method is used with zero-opacity for maximum speed. The

method takes about one second for 40,000 cells on a uniprocessor R3000-based Silicon Graphics VGX.

Two advantages to this method are that it is extremely fast and that it is trivial to implement. A feature

that could be considered either advantageous or disadvantageous is that small cells contribute the same

intensity as large cell, depth not being considered. On our grids, cell size is generally inversely proportional

to interest, because volumes are finely gridded in areas of most interest. Some scientists may prefer this

automatic weighting. Further, there is a problem with using hardware-compositing on those grids (or any

grids with many tiny cells), because the typical intensity/opacity resolution is only eight bits per channel.

Small cells may contribute well under 1/256 of the maximum possible intensity and, thus, never appear in

the image at all. Using the depthless method, data is not ignored in this way, just improperly weighted.

A more serious problem is that noticeable visual artifacts appear from some angles because the distance

between cell faces is not taken into account. These artifacts tend to delineate cell boundaries and probably

would not be misinterpreted as data information.

2.2 Cell Face Projection with Depth

Our next method addresses the main problem with the former: that cell depth isn't taken into account.

Here sample locations are first mapped to screen space. For each cell, vertices that lie on the convex hull

are identified. If convex hull vertices are not coalesced, the depth through the cell at that point is zero and

the vertex doesn't contribute color or opacity. If two vertices map to the same screen space location on

the convex hull (e.g., in looking straight on at a regular cell), a depth is recorded for that vertex and the

data value of the vertex is taken to be the average of the two vertices. This average is mapped to color

and opacity. For interior vertices, the point at the same projected location on the opposite cell exterior is

located and data values for that point found by interpolation. Depth and average color and opacity are

again calculated and stored in the vertex. This information is calculated whenever the viewpoint is changed

and is stored with the data structure for that cell. For rendering, each face is drawn once for each cell, and,

thus, twice overall (except on the boundary). Scaling intensity can take care of intensity problems this may

cause.

This method gives a more "realistic" (assuming some physical, colored medium being imaged) rendering,

although there are some angles close to 90 degrees (for regular cells) for which it produces noticeable artifacts.

It is much slower for new orientations than the depthless method, but takes opacity into consideration more

accurately.

2.3 Silhouette Splatting

This method wasn't very successful and we mention it mainly to save others the work of trying it out. In this

approach, we find the cell vertices that lie on the convex hull and connect them to form a polygon. Then we

find the centroid of the cell and its depth and estimated value. By triangulation, the centroid is connected

to the convex hull vertices, and these triangles sent to the screen. This is rather like the "splatting" method

that is quite fast and successful for regular grids [Wesg0, LH91]. Although, splatting is aormally done as a

region around a sample data point, not as a cell between sample data points.

Unfortunately, the images produced on our irregular grids were very blotchy from oblique angles. Further,

this method was not much faster than the one described in the previous section and produced worse images.

so we abandoned it. It is worth mentioning that, in splatting, the problem of blotchiness is partly removed

Figure1:Typicalprojectionof rectilinearcellandafewirregularhexahedronprojections.

bymakingthesplatsoverlap.Thiscouldbedoneonourgridsat someadditionalexpensebymovingthe
convexhullawayfromthecentroidfordrawing.Wedidn't believethiswouldimprovetheimageenoughto
warrantimplementation,andit wouldinvolvemorecalculations.

2.4 IncoherentProjection
Themethodwehavedubbed"incoherentprojection"is tilemostcarefuloftheprojectionmethodspresented,
and alsothe mostexpensive.It buildsuponthe "coherentprojection"techniquefor rectilineargrids
[WVG91],andextendsit to generalconvexhexahedra.The mainideais to renderthe2-dimensional
projectionof eachcellasanarrangementof polygons.Foranorthogonalprojectionof a rectilinearcell
thereare3nondegenerateand11degenerateprojectiontopologies.However,all cellsin thevolumefall into
thesamecasefromanygivenviewpoint.Forirregularhexahedrathenumberof nondegenerateprojection
topologiesissignificantlyhigher(seeexamplesin Figure1),andthenumberofdegenerateoneshigherstill.
Moreover,differentcellsdonotall fall into thesamecase,soa caseanalysistechniquewasnotattractive
to implement.Therefore,eachcell isanalyzedindividuallyin screenspace.A pleasantside-effectof this
approachis thatnon-orthogonalperspectiveprojectionsarenomoredifficultthanorthogonal.

AsshowninFigure1,someverticesintheprojectionofahexahedrondonotcorrespondto verticesofthe
hexahedron,but areproducedbyintersectionof edgeprojections.Wecalltheseintersection vertices. The

first technical issue is the location of these intersection vertices. We used a sweep line algorithm which we

now outline, assuming no degeneracies for the moment. Tile algorithm simultaneously finds tile intersection

vertices and the polygons that comprise the arrangement of the projection. (It also finds the convex hull as

a by-product.) The hexahedron to be analyzed is given in screen space (x, y, z), so the objective is to find

its projection on the x-y plane.

The algorithm maintains three data structures:

1. A priority queue of vertex events. Tile "mininmm" of this event queue is the unprocessed vertex with

minimum y-value.

2. An x-sorted list of active edges, where an edge is active if it goes from a processed vertex to an

unprocessed vertex.

3. A current boundary polygon in the form of an edge list, which surrounds the processed vertices and

edges.

Initially, the event queue contains the original hexahedron vertices sorted by y-value, and the active-edge

list and current boundary are empty. The algorithm proceeds ms follows.

O

Figfire 2: Current boundary updating and polygon creation steps. Left: a current boundary_vith one triangle

previously removed; middle: one new edge pair to and from the new "event" node; right: the second edge

pair formed a counterclockwise quadrilateral, which was spliced out.

vhile (eventQueue not empty)

nextVertex - getMin(eventQueue);

cul_entY - y-value of nextVertex;

for (edge in ActiveEdges)

currentX[edge] - x-value of edge when its y-value is currentY;

if (ActiveEdges is still sorted on currentX[edge])

remove edges that end at nextVertex from ActiveEdges,

call them remEdges;

determine z-distance of nextVertex from face into which it projects;

update currentBoundary with remEdges, creating some polygons of

the projection; /* see text belo. */

insert edges that begin at nextVertex into ActiveEdges in such a way

that all edges eill be x-ordered if currentY is

increased slightly;

deleteMin(eventQueue);

else

find (x,y) .here teo previously adjacent active edges intersected;

build a nee 'tintersection vertex", call it newVertex;

chop off the tvo intersecting edges so they end at newVertex;

the cut-off parts of the intersecting edges become new edges that

begin at newVertex;

insert the new edges into ActiveEdges in correct x-order as described

above;

insert(ne_Vertex, eventQueue); /* it _ill be the minimum */

This algorithm follows the standard pattern of sweep-line algorithms.

Updating the current boundary proceeds as suggested in Figure 2. Insert the first removed edge and its

reversal into the current boundary edge list in such a way that the (nonconvex, nonsimple) polygon formed

is planar (no edges cross); this forms a sort of needle. If there is a second removed edge, do likewise, but this

completes a counterclockwise polygon, which is spliced out. (The last vertex of the cell has a third removed

edge, which creates a second polygon to be spliced out.)

The above outline omits the details of handling "degeneracies". Projection degeneracies occur when any

two projection vertices have the same z-value or y value. These can be removed by assuming a slight rotation

of the screen space that does not change any nondegenerate topology. The details are tedious, but standard.

A more difficult and less standard degeneracy occurs when the original hexahedron is itself degenerate:

if two points coincide in 3-space, no spatial transformation will separate them. Our solution was based on

certain assumptions about what degeneracies could occur.

1. We assume no two adjacent edges have zero length;

2. We assume no two adjacent faces have zero area;

These assumptions leave a lot of flexibility: tetrahedra and pentahedra can be represented as degenerate

hexahedra.

Suppose an edge of zero length is encountered. We want to perturb the hexahedron to give the edge some

length while maintaining convexity. This requires finding a direction in which the two coinci4ing vertices can

be "pulled apart". If the edge connects two faces with positive area, their planes intersect in a well-defined

line that determines the required direction. The more difficult case is when the edge is adjacent to one face

of zero area. Then we take advantage of the fact that, under the above assumptions, the diagonally opposite

edge "in the same direction" cannot be degenerate. Form a triangle with this opposite edge as base and the

coinciding vertices as apex, then slightly "pull apart" the coinciding vertices in the planes of the triangle

and the face of positive area.

3 Opacity

Including opacity in direct volume rendering allows information to occlude that lying behind it. Sometimes

this is desirable, but at other times it may not be necessary. If the purpose of the rendering is to get a general

feel for information in the volume, zero-opacity rendering ensures that all information comes through. On

the other hand, sometimes one would like an important feature or range of values to stand out, and opacity

makes this possible. This is described ill Section 3.1.

An additional issue becomes prominent in using opacity with hardware interpolation and blending. As

mentioned in earlier papers, linear interpolation used in Gouraud-shading polygons produces an incorrect

estimate of intensity and opacity across the projected polygon, even when the vertex values are calculated

fairly accurately [MHC90, WVG91]. By using a method we call "multi-pass blending", we can approximate

the correct intensity and opacity and still use the hardware polygon renderer. This is described in Section 3.2.

3.1 Visibility Ordering

A visibility ordering, which is an ordering on the cells such that no earlier cell occludes a later cell in screen

space, is necessary to render cells with semi-transparency. Visibility ordering issues for tetrahedra were

thoroughly explored by Williams [Wi192b], with attention to nonconvex volumes. This section outlines an

implementation for curvilinear grids that is considerably simpler and is robust in practice. The main ideas

are applicable to tetrahedral grids as well. Two issues concerning visibility ordering are: does one exist, and

if so, how to find one. Although tile theory is murky in tile general case, in practice our method has never

failed to find a visibility ordering. Williams reports similar practical experience.

When the volume is given as hexahedra there are significant advantages to keeping it in that form, rather

than decomposing it into tetrahedra.

1. Adjacency and much other topology can be done by arithmetic on radices, without auxiliary data

structures;

2. Decomposing into tetrahedra multiplies the number of cells by 5.

The other side of the coin is that tetrahedra are simpler to render.

The main idea that is well known for efficient visibility ordering is that of linear-time topological sorting

[MHCg0, Wil92b]. Recall that a topological sort of a directed acyclic graph is an ordering (or numbering)

of its vertices such that there is no path from a smaller vertex to a larger one. This can be accomplished

in linear time by a depth-first search and post-order numbering. For the visibility application the graph's

vertices are cells and its directed edges given by the immediately occludes relation: cell A immediately occludes

cell B if they share a face and A occludes B in screen space. For convex volumes, topological sort finds a

visibility order if one exists and discovers a cycle otherwise [MHC90, Wil92b]. Nonconvex volumes occur

often in practice, so it is important for an algorithm to work well on them, too. Here there is no definite

theory known. Williams describes an heuristic for nonconvex volumes. We present an alternative that is

considerably simpler, for connected, possibly nonconvex, volumes.

Our algorithm takes advantage of the fact that the underlying adjacency graph of the celts is undirected,

where two cells are adjacent if they share a face. This undirected graph becomes directed by considering the

orientation of the shared face in screen space, leading to the immediately occludes relation mentioned above.

(The z component in screen space of the shared face normal determines which cell occludes the other.) We

combine an undirected breadth-first search with directed depth-first searches.

For curvilinear grids, edges need not be represented explicitly, as they can be determined by arithmetic

on cell indices. As it turns out, edge directions do not need to represented explicitly either!

The breadth-first search is implemented with a FIFO queue of cells. Initially, this FIFO queue contains

one cell that has a vertex that is farthest from the viewpoint (minimum z in screen space), and all cells are

unmarked.

nextNum = O;

while (FIFOqueue not empty)

nextCell = front(FIFOqueue);

if (nextCell not marked)

depthFirstsearch(nextCell.nextNum) yielding negNum ;

nextNum - newNum;

dequeue (nertCell) ;

The depth-first search also needs to test edge directionality, and post "uphill" neighbors to the FIFO

queue; otherwise it is quite standard.

depthFirstSearch(cell, nextNum)

mark cell;

for (neighbor adjacent to cell)

if (neighbor not marked)

if (neighbor immediately occludes cell)

enqueue(neighbor, FIFOqueue) ;

else

depthFirstSearch(neighbor, nextNum) yielding negNum;

nextNum = newNum;

else if (neighbor is marked, but has no visNumber)

Error - Cycle in vis order _has never happened in practice};

else

{neighbor has visNumber; do not visit)

visNumber [cell] = nextNum;

return nextNum ÷ 1 ;

Williams reports that about 60,000 tetrahedra per second call be ordered (SGI 4D/VGX). We found that

a comparable number of hexahedra per second were ordered by the above algorithm. Thus converting to

tetrahedra would increase visibility-ordering cost by a factor of 5.

3.2 Multi-pass Blending

Linear interpolation is not always what is desired, but it is what the hardware offers. However, SGI

workstations have a blend function setting that permits the "source" color to be multiplied by "one minus

source alpha", and added to the background (cells already rendered). This permits some quadratic functions

to be used for color interpolation, by multiplying two linear functions: color and alpha.

Assume a cell is filled with a semi-transparent light-emitting medium. When cell faces are planes, the

depth 6 of the cell varies linearly along any line, but the effective transmission of color varies as (1 -e-_6).

Thi_ can be approximated between two vertices in the projection by a quadratic function of_ that is zero at

vertices of 0 depth and gives the correct value of color at 6 = A, the depth of the "thickest" vertex of the cell

projection. The remaining parameter of the quadratic was chosen to minimize the squared error between

the quadratic and the exponential function it is approximating, on the interval [0, A]. Somewhat amazingly,

this can be solved in closed form; some of the technical details are outlined in Appendix A. Many reasonable

quadratics will give better interpolations than linear.

The above trick only provides nonlinear interpolation for the added contribution of the cell. The

background needs to be reduced according to the cell's opacity, which again varies with depth according

to an exponential decay. This time, the only trick is to use a linear function twice, with the blend function

"one minus source alpha" applied to the background. The product of the two linear functions is a quadratic,

and the alpha is rigged to give a reasonable quadratic approximation to the desired exponential decay.

Thus three passes are required in all. The first two apply opacity of the new cell to the background

and the third adds the cell's own color. The extra time in computation and rendering are substantial (see

Table 1.

4 Transfer Function Manipulation

For some time we have used an interactive transfer function editor to design the mapping between data

values and color and opacity [Ram90]. While it is certainly more pleasant than designing mappings without

it, we found it quite frustrating and time-consuming to try and guess which mappings bring out regions of

interest.

Therefore, we developed a fast method of scanning the volume. The user interactively picks a data value

and only data values within a user-controlled range around this center value are given a color. The user

can designate the color and opacity of this banded region. The transfer function is a simple isoceles triangle

centered at the designated center value. A slightly alternate approach is to use a pre-designed transfer

function and define a transparent box around a designated data value. Only data within this box takes on

color and opacity.

Rendering with such a single-band transfer function is extremely fast because only ceils whose data values

lie within the range of this triangle will have any visibility and need be rendered. Cells within this range can

be rapidly found by using a supplemental data structure. This data structure is a two-dimensional array

of size 256 X 256. Each location is a linked list of pointers into the data. (We assume 8-bit channels for

color and opacity.) The minimum data value of a cell (scaled into the range 0-255) determines the row of

the array and tile maximum data determines the column of the array with which a cell is associated. (This

could be more efficiently done but space was not a problem so we use this for simplicity.)

In drawing an image using the banded function, only those columns greater or equal to the minimum

value of the band need be drawn; and within those columns, only rows less than or equal to the maxinmm

llliliii l i
Illllllll I I
Illlllil I I I
IIIIIIII I I I
IIIIIII I I I
_IIIII I I

i

i

Figure 3: Single slices of the blunt fill (left) and post (right) curvilinear grids.

value of the band need be drawn. In many cases, this method takes a small fraction of the time it takes to

render the whole volume.

A second feature of this method is that the band can easily and quickly be cycled, giving the effect of a

moving fuzzy isosurface and helping to indicate the relation of neighboring data regions.

5 Restriction and Inverse Mapping

The final approach in our recent attempts to make direct volume rendering more useful was to implement

a method of interactively restricting the parts of the volume rendered. At the suggestion of Arsi Vaziri of

NAS/NASA-Ames, we invert the mapping for this restricted region to find the actual locations within the

data that are being drawn.

Restriction is done by defining a simple bounding box whose location and size are defined interactively

using sliders. Only cells whose origins lie within this box are drawn. Adding the option to draw cell origins

as points helps clarify the relation of the volume rendering to the sample points.

If the restricted region is fairly small, it is practical to print the locations and values of the cells that lie
within the box to the screen. This allows the user to determine the actual computational space location of

features of interest.

6 Experimental Results

We explored these methods on two curvilinear grids. (The software works on a regular grid, but it is not

optimized to take advantage of the greater simplicity of these grids.) The curvilinear grids tested were the

"blunt fin" [ttB85] and the "post" [RKK86], both from NASA-Ames Research Center. The curvilinear grid

structure for these grids can be seen in Figure 3. The blunt fin is a 40x32x32 grid containing 40,960 samples,

and the post is a 38x76x38 grid containing 109,744 samples.

Table 1 shows the rendering times for our four volume rendering methods using these two grids. Times

are user and system CPU seconds on a Silicon Graphics uniprocessor VGX. For comparison, Williams reports

times of around 15 seconds for volumes comparable in size to the blunt fin [Wil92a]. His images might be

described as intermediate in quality. Coherent projection [WVG91] required about 4 to 7 seconds on a

comparably sized rectilinear grid.

First we consider our four direct volume rendering methods. Cell face projection without depth is

significantly faster than tile others and is desirable for rapid scanning of tile volume. We ignore the cost of

10

Data Visibility MakingData Single-PassMulti-pass
Set Sort Structures Rendering Rendering

FacesWithoutDepth BluntFin 0.64 - 1.14 -
Post 1.65 - 3.02 -

FacesWith Depth BluntFin 0.64 '6.63 2.94 11.72
Post 1.65 2i.76 i 0.99 39.76

Silhouette Splat Blunt Fin 0.64 - 7.74 -

Post 1.65 - 22.98 -

Incoherent Projection Blunt Fin

Post

0.64

1.65

37.56

104.48

3.52

13.70

12.05

- 37.38

Table 1: Rendering Times of Blunt Fin Data. (Time in CPU seconds.)

making the data structure for this method because it is done once as the data is read in and never changes

despite orientation or mapping alternations. However, noticeable artifacts which delineate cell boundaries

may occur from certain angles.

Cell face projection with depth uses the size and shape of cells more carefully, and requires rendering

information that changes with orientation. We calculate this information (the "making data structures" cost

in Table 1) and store it. Actuatly drawing the image from these structures takes much less time ("Rendering"

columns in Table 1). This approach is desirable because the image can be scaled, rotated, transfer functions

changed and intensity/opacity scaled, without recomputing the data structures.

Because we only pursued silhouette splatting briefly, this split between making data structures and

rendering was never implemented for this method. We see from the costs that silhouette splatting is about

2/3 as expensive as cell face projection with depth. The quality of the images, however, is often somewhat

worse.

As expected, our most careful and expensive method is more time-consuming. However, this method

is much less likely to produce noticeable artifacts from any angle. Again we split the calculation into

determining orientation-specific information and then rendering. The cost of re-rendering without orientation

changes is not much worse than the method based on cell faces with depth, and does produce much better

images.

The linear-time visibility sort used contributed only minimally to the cost of rendering. Multi-pass

blending noticeably increased rendering time, by three or four times. However, the multi-pass method can

produce smoother images, so it may be desirable when animation is not needed.

7 Conclusions

We discovered that projection methods do provide reasonable speed for volume reudering medium-sized

curvilinear grids, far beyond what we could achieve with ray-tracing approaches. Rendering opacity with

any degree of accuracy is the most costly function.

Acknowledgements

This research was supported in part by NSF PYI grant CCR-8958500, NSF New Technologies Program grant

ASC-9102497_ NSF Infrastructure grant CDA-9115268, and a NASA-Ames Research Center Cooperative

Agreement Interchange No. NCC2-717.

ll

References

[Cha90] JudithChallinger.Object-orientedrendering of volumetric and geometric primitives. Master's

thesis, University of California, Santa Cruz, UCSC Computer and Information Sciences, Applied

Sciences Building, Santa Cruz, CA 95064, 1990.

[DCH88] Robert A. Drebin, Loren Carpenter, and Pat Hanrahan. Volume rendering. Computer Graphics,

22(4):65-74, July 1988.

[Gar90] Michael P. Garrity. Raytracing irregular volume data. Computer Graphics, 24(5):35-40,
December 1990.

[HB85] Ching-Mao Hung and Pieter G. Buning. Simulation of blunt-fin-induced "_hock-wave and

turbulent boundary-layer interaction. J. Fluid Mechanics, 154:163-185, 1985.

[Kru90] Woifgang Krueger. Volume rendering and data feature enhancement. Computer Graphics

[Proceedings of the San Diego Workshop on Volume Visualization), 24(5):21 - 26, 1990.

[Lev88] Marc Levoy. Display of surfaces from volume data. 1EEE Computer Graphics and Applications,

8(3):29-37, March 1988.

David Laur and Pat Hanrahan. Hierarchical splatting: A progressive refinement algorithm for

volume rendering. Computer Graphics (,4 CM Siggraph Proceedings), 25(4), July 1991.

Nelson Max, Pat Hanrahan, and Roger Crawfis. Area and volume coherence for efficient

visualization of 3d scalar functions. Computer Graphics (ACM Workshop on Volume

Visualization), 24(5):27-33, December 1990.

Shankar Ramamoorthy. An interactive transfer function editor. Internal Technical Report, 1990.

S. E. Rogers, D. Kwak, and U. K. Kaul. A numerical study of three-dimensional incompressible

flow around multiple posts, 1986. AIAA paper 86-0353, Reno, Nevada.

Shankar Ramamoorthy and Jane Wilhelms. An analysis of approaches to ray-tracing curvilinear

grids. Technical Report UCSC-CRL-92-07, UCSC, University of California, CIS Board, Santa

Cruz, CA, January 1992.

Peter Shirley and Allan Tuchman. A polygonal approximation to direct scalar volume rendering.

Computer Graphics, 24(5):63-70, December 1990.

Craig Upson and Michael Keeler. The v-buffer: Visible volume rendering. Computer Graphics,

22(4):59-64, July 1988.

Sam Uselton. Volume rendering for computational flid dynamics: Initial results. Technical

Report RNR-91-026, NAS-NASA Ames Research Center, Moffett Field, CA, 1991.

Jane Wilhelms, Judy Challinger, Naim Alper, Shankar Ramamoorthy, and Arsi Vaziri. Direct

volume rendering of curvilinear volumes. Computer Graphics, 24(5), December 1990.

Lee Westover. Footprint evaluation for volume rendering. Computer Graphics, 24(4):367-76,

August 1990.

Peter Williams. Interactive splatting of nonrectilinear volumes. In Visualization '92, pages

37-44. IEEE, October 1992.

[LH91]

[MHC9O]

[Ram90]

[RKK86]

[Rw92]

[ST90]

[UK88]

[Use91]

[WCA+90]

[Wes90]

[Wi192a]

12

[Wi192b] PeterWilliams. Visibilityorderingmeshedpolyhedra. A CM Transactions on Graphics,

11(2):103-126, April 1992.

[WVG91] Jane Wilhelms and Allen Van Gelder. A coherent projection approach for direct volume

rendering. Computer Graphics (Proceedings ACM Siggraph), 25(4):275-284, 1991.

Appendix A Quadratic Fit to Exponential

This section sketches a minimum square-integral error fit of a quadratic function to a given exponential

function, subject to boundary conditions. It is used to derive coefficients for the multi-pass blending method

described in Section 3.2. The fit assumes that C, the color-per-unit-distance, and a, the opacity-per-unit-

dist£nce, are constant within the cell; that only the cell depth in z varies. The z-depth of'the cell will be

denoted simply by z; at the cell's thickest point z = A.

Let f(z) be the amount of light transmitted from the cell at a point of thickness z. The well-known

formula is:

f(:) =--C (1-e -°z)
O_

Our goal is to approximate f on the range [0, A] by a quadratic function

g(:) = (co+ c_:)(a0 + al".)

Then using the source-color x source-alpha blend function in hardware, where source-color is computed as

(co + ctz) and source-alpha is computed as (a0 + alz), causes a close approximation of g(z) to be rendered

using Gouraud shading.

We impose end-point constraints g{0) = f(0) and g(A) = f(A). The first permits simplification, as it

forces either co or ao to be zero. We choose to make ao = 0. Then we can set al = 1/A without loss of

generality. Now

The second constraint will be incorporated with a LaGrange multiplier, A. To minimize

0"(/(:) - g(.-))-_d: - _(c0 + qA)

we set the partial derivatives with respect to co and cl to zero. This gives the constraints:

-2 (f(:) - g(:)) dz - A = 0

/0-2 (f(z) - g(z)) d-- hA = 0

Performing the integrations leads to two simultaneous equations in three unknowns: co, el and k. A third

equation is given by the right end-point constraint:

c0 +ctA =/(.A)

13

Fortunately, the system is linear. To simplify the notation, several abbreviations will be used:

C
A = aA /3 = --

Ot

r = (1- e-_)

Fo = -_(A-T)
(1

(A + ½A _ - (1 + A)T)
F1 = a--7

F_ = 2/3a__5 (A + ½A 2 + _A 3- (1 + A + ½A:)T) : Io_z_-f(_)d_

With the above notation, the solution is:

co = _ 5F1- -

i0 -3F_ + + _4A"T
cl - A3 A

A = i3---A 3Fx-5-_-+_A"T

F0, F1, F2 are well defined as a -- 0, but care is needed to maintain numerical accuracy. The power series

A 1A2 }A 3expansion T = (- _ + ...) exposes the low-order terms that cancel. For small values of A, we have

(F_---_) = _--4,(-2 + _A" + (1-1- 2) T)

o : (A- 6,a...)

_A +_A - r_o_A'...)

t A z ._s A ae_ =-_(_A-_ +_ ...)

14

